Received 15 March 2007

Accepted 13 April 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christopher D. Entwistle, Andrei S. Batsanov and Todd B. Marder*

Department of Chemistry, Durham University, South Road, Durham DH1 3LE, England

Correspondence e-mail: todd.marder@durham.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å Disorder in main residue R factor = 0.043 wR factor = 0.109 Data-to-parameter ratio = 18.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A new polymorph of dimesitylborinic acid

A new polymorph of dimesitylborinic acid, $C_{18}H_{23}BO$, closely resembles the one previously reported in molecular conformation, crystal packing and symmetry. The asymmetric unit contains two molecules. The structure contains tetramers of crystallographic C_2 symmetry, held together by a ring of four $O-H\cdots O$ hydrogen bonds.

Comment

In the course of our studies (Yuan et al., 2006) on the synthesis, crystal structures, linear and non-linear optical properties of p*p*-*R*-phenylethynyl-*R*-phenyl-, and (E)-2-(p-R-phenyl)ethenyl-dimesitylboranes, we obtained a new (β) polymorph of the title compound (I). It is distinct from the form (α) reported by Weese *et al.* (1987), although it has the same space group (C2/c), broadly similar packing motifs (Fig. 1) and lattice parameters [for (α -I) at T = 130 K: a = 22.934 (12), b =15.248 (9), c = 21.993 (11) Å, $\beta = 125.53$ (3)°, V = 6260 (6) Å³]. The asymmetric unit comprises two molecules (Fig. 2 and Table 1) which, together with their equivalents generated by a twofold axis, form a hydrogen-bonded tetramer. The centroid of the tetramer has the coordinates $(\frac{1}{2}, 0.5413, \frac{1}{4})$, compared with $(\frac{1}{2}, 0.2916, \frac{1}{4})$ in (α -I). The four O atoms of the tetramer form a flattened tetrahedron, and each hydroxyl H atom is disordered over two positions; hence we have a superposition of two systems of hydrogen bonds, running along the O_4 ring in opposite directions (Fig. 3 and Table 2). A similar type of disorder may exist in $(\alpha$ -I), for which the hydroxyl H atoms were not located.

The B atoms have a trigonal-planar geometry, the arene rings (see Fig. 2) are inclined to their coordination planes (BC₂O) by 59.53 (4) (ring bz1), 53.37 (5) (bz2), 56.40 (5) (bz3) and 48.02 (6)° (bz4). The corresponding angles in (α -I) are 53.9, 53.5, 47.9 and 56.5°, respectively.

© 2007 International Union of Crystallography All rights reserved

Figure 1

Crystal packing of α - (top) and β -forms of (I), projected on the (010) planes.

Figure 2

The asymmetric unit of $(\beta$ -I), showing displacement ellipsoids at the 50% probability level.

Figure 3

Hydrogen bonding in the tetramer. Primed atoms are generated by the twofold axis.

Compound (I) has been studied extensively, both chemically and crystallographically, as a ligand in transition-metal complexes, e.g. by Chisholm et al. (1993), Anulewicz-Ostrowska et al. (2000, 2002), Cole et al. (2005) and Zhao et al. (2007).

Experimental

Compound (I) was isolated as a hydrolysis by-product of the synthesis of (E)-1-{bis(mesityl)boryl}-2-(1,2-dicarba-closo-dodecaboranyl)-ethene (Yuan et al., 2006) and obtained during recrystallization of the sample by slow evaporation of a DCM/hexane solution.

Crystal data

$C_{18}H_{23}BO$	$V = 6237.1 (13) \text{ Å}^3$
$M_r = 266.17$	Z = 16
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 22.890 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 15.233 (2) Å	T = 120 (2) K
c = 20.552 (2) Å	$0.33 \times 0.25 \times 0.04 \text{ mm}$
$\beta = 119.50 \ (1)^{\circ}$	

Data collection

Bruker ProteumM APEX CCD area-detector diffractometer Absorption correction: none 34987 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	383 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 0.90	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
7157 reflections	$\Delta \rho_{\min} = -0.21 \text{ e } \text{\AA}^{-3}$

7157 independent reflections 4443 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.067$

Table 1

Selected geometric parameters (Å, °).

O1-B1	1.3647 (19)	O2-B2	1.3663 (18)
B1-C11	1.574 (2)	B2-C31	1.577 (2)
B1-C1	1.588 (2)	B2-C21	1.583 (2)
O1-B1-C11	117.53 (13)	O2-B2-C31	117.42 (13)
O1-B1-C1	116.49 (13)	O2-B2-C21	116.14 (13)
C11-B1-C1	125.97 (13)	C31-B2-C21	126.43 (13)

Table 2		
Hydrogen-bond geometry (.	Å, '	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1B \cdots O1^i$	0.84	2.04	2.7400 (19)	140
$O1 - H1A \cdots O2$	0.84	1.92	2.7071 (15)	155
$O2-H2B\cdots O1$	0.84	1.88	2.7071 (15)	168
$O2-H2A\cdots O2^{i}$	0.84	2.24	2.7370 (19)	118

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

All H atoms were approximately located in a difference Fourier map. Methyl groups were refined as rigid bodies rotating around the C-C bonds, with C-H = 0.98 Å and a common refined U_{iso} value for all H atoms of each group. Methyl groups C8H₃ and C18H₃ were treated as rotationally disordered (in a 2:1 ratio between 2 orientations). Hydroxyl atoms H1 and H2 were treated as disordered equally between positions A and B, riding on the oxygen atoms O1 and O2, with $U_{iso}(H) = 1.5U_{eq}(O)$. The directions of O-H bonds were taken from the difference Fourier map, but their lengths were idealized to 0.84 Å. Aryl H atoms were treated as riding on the C atoms $[C-H = 0.95 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)].$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank EPSRC for financial support.

References

Anulewicz-Ostrowska, R., Lulinski, S., Pindelska, E. & Serwatowski, J. (2002). Inorg. Chem. 41, 2525–2528.

- Anulewicz-Ostrowska, R., Lulinski, S., Serwatowski, J. & Suwinska, W. (2000). Inorg. Chem. **39**, 5763–5767.
- Bruker (2001). *SMART* (Version 5.625) and *SHELXTL* (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Version 6.28A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chisholm, M. H., Folting, K., Haubrich, S. T. & Martin, J. D. (1993). *Inorg. Chim. Acta*, **213**, 17–24.
- Cole, S. C., Coles, M. P. & Hitchcock, P. B. (2005). Organometallics, 24, 3279– 3289.
- Weese, K. J., Bartlett, R. A., Murray, B. D., Olmstead, M. M. & Power, P. P. (1987). Inorg. Chem. 26, 2409–2413.
- Yuan, Z., Entwistle, C. D., Collings, J. C., Albesa-Jové, D., Batsanov, A. S., Howard, J. A. K., Taylor, N. J., Kaiser, H. M., Kauffmann, D. E., Poon, S.-Y., Wong, W.-Y., Jardin, C., Fathallah, S., Boucekkine, A., Halet, J.-F. & Marder, T. B. (2006). *Chem. Eur. J.* **12**, 2758–2771.
- Zhao, P. J., Incarvito, C. D. & Hartwig, J. F. (2007). J. Am. Chem. Soc. 129, 1876–1877.